首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11720篇
  免费   1940篇
  国内免费   1117篇
化学   8830篇
晶体学   96篇
力学   1023篇
综合类   216篇
数学   599篇
物理学   4013篇
  2024年   14篇
  2023年   125篇
  2022年   271篇
  2021年   364篇
  2020年   531篇
  2019年   401篇
  2018年   418篇
  2017年   471篇
  2016年   624篇
  2015年   535篇
  2014年   649篇
  2013年   1253篇
  2012年   819篇
  2011年   749篇
  2010年   599篇
  2009年   646篇
  2008年   621篇
  2007年   718篇
  2006年   633篇
  2005年   595篇
  2004年   523篇
  2003年   425篇
  2002年   364篇
  2001年   315篇
  2000年   287篇
  1999年   206篇
  1998年   221篇
  1997年   187篇
  1996年   152篇
  1995年   164篇
  1994年   99篇
  1993年   138篇
  1992年   117篇
  1991年   84篇
  1990年   68篇
  1989年   44篇
  1988年   59篇
  1987年   41篇
  1986年   37篇
  1985年   34篇
  1984年   29篇
  1983年   11篇
  1982年   16篇
  1981年   14篇
  1980年   19篇
  1979年   19篇
  1978年   13篇
  1977年   10篇
  1976年   12篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
We propose an improved framework for dynamic mode decomposition (DMD) of 2‐D flows for problems originating from meteorology when a large time step acts like a filter in obtaining the significant Koopman modes, therefore, the classic DMD method is not effective. This study is motivated by the need to further clarify the connection between Koopman modes and proper orthogonal decomposition (POD) dynamic modes. We apply DMD and POD to derive reduced order models (ROM) of the shallow water equations. Key innovations for the DMD‐based ROM introduced in this paper are the use of the Moore–Penrose pseudoinverse in the DMD computation that produced an accurate result and a novel selection method for the DMD modes and associated amplitudes and Ritz values. A quantitative comparison of the spatial modes computed from the two decompositions is performed, and a rigorous error analysis for the ROM models obtained is presented. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
72.
The “topological polymer chemistry” of amphiphilic linear and cyclic block copolymers at an air/water interface was investigated. A cyclic copolymer and two linear copolymers (AB‐type diblock and ABA‐type triblock copolymers) synthesized from the same monomers were used in this study. Relatively stable monolayers of these three copolymers were observed to form at an air/water interface. Similar condensed‐phase temperature‐dependent behaviors were observed in surface pressure–area isotherms for these three monolayers. Molecular orientations at the air/water interface for the two linear block copolymers were similar to that of the cyclic block copolymer. Atomic force microscopic observations of transferred films for the three polymer types revealed the formation of monolayers with very similar morphologies at the mesoscopic scale at room temperature and constant compression speed. ABA‐type triblock linear copolymers adopted a fiber‐like surface morphology via two‐dimensional crystallization at low compression speeds. In contrast, the cyclic block copolymer formed a shapeless domain. Temperature‐controlled out‐of‐plane X‐ray diffraction (XRD) analysis of Langmuir–Blodgett (LB) films fabricated from both amphiphilic linear and cyclic block copolymers was performed to estimate the layer regularity at higher temperatures. Excellent heat‐resistant properties of organized molecular films created from the cyclic copolymer were confirmed. Both copolymer types showed clear diffraction peaks at room temperature, indicating the formation of highly ordered layer structures. However, the layer structures of the linear copolymers gradually disordered when heated. Conversely, the regularity of cyclic copolymer LB multilayers did not change with heating up to 50 °C. Higher‐order reflections (d002, d003) in the XRD patterns were also unchanged, indicative of a highly ordered structure. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 486–498  相似文献   
73.
74.
Karst springs of the Zagros Mountains contribute a significant amount to agricultural and human water demands of western and south-western Iran. For an adequate management of available water resources in semi-arid and arid regions, sufficient hydrological monitoring is needed, and hydro-chemical and isotope hydrological data provide important additional information. About 350 water samples were collected from precipitation, river water, and karst springs of the upper part of the Karkheh River Basin (20,895 km2) located between 33°35 and 34°55 North and 46°22 and 49°10 East with elevations ranging from 928 to 3563 m above sea level. Sampling was conducted in monthly time resolution from August 2011 to July 2012. All samples were analysed for hydro-chemical parameters (pH, electrical conductivity, and major ions) and stable isotopes (deuterium, oxygen-18). Isotope values of precipitation indicate a local meteoric water line (Zagros MWL δ2H=6.8 δ18O+10.1; R2=0.99) situated between the Mediterranean MWL and Global MWL. Spring and river water isotope values vary between?7.1 and?4.1 ‰, and?38 and?25 ‰ for δ18O and δ2H, respectively, responding to winter snowmelt and evaporation. This work implements stable isotopes and hydro-chemical information of springs and river water to understand hydrological and hydro-geological interrelations in karstic semi-arid areas and helps to improve the current water resources management practices of western Iran.  相似文献   
75.
76.
A novel, straightforward and versatile chemical pathway has been studied to functionalize water‐soluble chitosan oligomers. This metal‐free methodology is based on the epoxy‐amine reaction of the allyl glycidyl ether with chitosan, followed by thiol‐ene radical coupling reaction of ω‐functional mercaptans, using 4,4′‐Azobis(4‐cyanovaleric acid) as a free radical initiator. Both reactions were entirely carried out in water. In a preliminary step, chitosan depolymerization was carried out using H2O2 in an acetic medium under 100 W microwave irradiation, optimizing the yield of water‐soluble oligomers. Functionalization by six different thiols bearing alcohol, carboxylic acid, ester, and amino groups was then performed, leading to a range of functional oligochitosans with different grafting efficiencies. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 39–48  相似文献   
77.
Ternary core–shell heterostructured rutile@anatase@CrxOy nanorod arrays were elaborately designed as photoanodes for efficient photoelectrochemical water splitting under visible‐light illumination. The four‐fold enhanced and stabilized visible‐light photocurrent highlights the unique role of the interim anatase layer in accelerating the interfacial charge transfer from the CrxOy chromophore to rutile nanorods.  相似文献   
78.
We report a simple and environment friendly method to fabricate superhydrophobic metallic mesh surfaces for oil/water separation. The obtained mesh surface exhibits superhydrophobicity and superoleophilicity after it was dried in an oven at 200 °C for 10 min. A rough silver layer is formed on the mesh surface after immersion, and the spontaneous adsorption of airborne carbon contaminants on the silver surface lower the surface free energy of the mesh. No low‐surface‐energy reagents and/or volatile organic solvents are used. In addition, we demonstrate that by using the mesh box, oils can be separated and collected from the surface of water repeatedly, and that high separation efficiencies of larger than 92 % are retained for various oils. Moreover, the superhydrophobic mesh also possesses excellent corrosion resistance and thermal stability. Hence, these superhydrophobic meshes might be good candidates for the practical separation of oil from the surface of water.  相似文献   
79.
An electron dynamics mechanism of charge separation in the initial stage of excited‐state reactions of the class of X?Mn?OH2???A${ \to }$ X?Mn?OH???HA (X=OH or OCaH; A=N‐methylformamidine, guanidine, imidazole, or ammonia cluster) is reported. The dynamic effect of calcium doping is also revealed. This study provides a novel factor to be considered in designing efficient systems for photoinduced water splitting.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号